Synthesis of Trifluoromethyl- and Methylphosphazene Polymers: Differences between Polymerization and Initiator/Terminator Properties

Harry R. Allcock,* Christine R. de Denus,† Robbyn Prange, and James M. Nelson‡

Department of Chemistry, The Pennsylvania State University, 152 Davey Laboratory, University Park, Pennsylvania 16802

Received June 18, 1999; Revised Manuscript Received September 23, 1999

ABSTRACT: A new polyphosphazene, $[N=PPh(CF_3)]_n$, has been prepared via the PCl_5 -induced cationic polymerization of $Me_3SiN=P(CF_3)(Ph)Br$. In addition, the cationic route has been used to produce $[N=PPh(Me)]_n$ with controlled molecular weights and narrow polydispersities. By contrast, the new monomer $Me_3SiN=P(t-Bu)(Ph)F$ failed to polymerize under any conditions but was used as an initiator and terminator to prepare both mono- and ditelechelic polymers. This monomer was also used to prepare $[F(Ph)(t-Bu)P=N(PCl_2=N)P(t-Bu)(Ph)F]^+$, which was used as a substrate for reactions with alkoxy and aryloxy groups to yield the hydrolytically stable materials, $[R(Ph)(t-Bu)P=N(PR_2=N)P(t-Bu)(Ph)R_2]$.

Introduction

The development of new synthetic methods for the production of polyphosphazenes, (N=PR₂)_n with unique physical and chemical properties, is an important objective. 1-3 The various properties of these polymers are normally controlled by the side groups along the polymer backbone. Traditionally, most polyphosphazenes have been prepared by the thermal ringopening and macromolecular substitution route developed in our program.1 The initial step in this approach is the thermal ring-opening polymerization of hexachlorocyclotriphosphazene, (NPCl₂)₃, which yields the reactive macromolecular intermediate, poly(dichlorophosphazene), $(N=PCl_2)_n$.¹⁻³ Subsequent replacement of the chlorine atoms in $(N=PCl_2)_n$ with alkoxy, aryloxy, and/ or amine nucleophiles has yielded several hundred different poly(organophosphazenes). However, this route allows for only minimal control of the molecular weight and generates polymers with broad polydispersities.⁴

Recently, these shortcomings were overcome through the discovery and development of an ambient temperature condensation synthesis of $(N{=}PCl_2)_{\it I\!\! L}$. This synthetic method involves the living cationic-induced polymerization of $Me_3SiN{=}PCl_3$ (1) with trace amounts of PCl_5 (Scheme 1) to yield polymers with well-defined molecular weights and narrow polydispersities. 5 To date, the versatility of this living route has been extended to the synthesis of block copolymers, $^{6-10}$ starbranched polymers, 11 and end-functionalized polyphosphazenes. 3,12

A major component of the current work in this area is directed toward the synthesis of polyphosphazenes with new side groups, including perfluorinated side groups. Efforts to incorporate perfluoroalkyl side groups into phosphazenes has long been a topic of serious study due to the expected hydrophobicity and unique solvent-repulsion characteristics of such species. $^{2,13-15}$ Several fluorine-containing polyphosphazenes, including [N= $P(OCH_2CF_3)_2|_{D}$ and [N= $P(OCH_2CF_3)(OCF_2(CF_2)_2CF_2H)|_{D}$

Scheme 1

$$\begin{array}{c|c}
Cl & PCl_5 \\
Cl & PCl_5 \\
Cl & Cl & PCl_3^{\dagger} PCl_6
\end{array}$$

have been prepared and shown to possess interesting and unique properties such as elasticity, biocompatibility, and stability toward thermal degradation, oxidative cleavage, and organic solvents. Although polymers of this type illustrate the importance of fluorinated groups in the generation of unique properties, they are limited by the presence of the P-O-C linkage and the presence of α -hydrogen atoms in the side groups. Thus, polyphosphazenes that contain an organic substituent directly attached to the backbone through a P-C bond form a class of polymers that are of special interest.

However, the synthesis of polyphosphazenes that contain direct P-C bonds has been a difficult barrier to overcome. The sensitivity of the N=P backbone bonds toward cleavage by alkyllithium and Grignard reagents makes the synthesis via macromolecular substitution of poly(dichlorophosphazene) difficult. Similarly, the thermal ring-opening polymerization of a variety of cyclotriphosphazenes such as $N_3P_3(R)Cl_5$ (R = Me, Et, n-Pr, n-Bu), $N_3P_3(R)_2Cl_4$ (R = Me, Et), and $N_3P_3(R)_3Cl_3$ (R = Me) produces polyphosphazenes with broad polydispersities. 16-19 Furthermore, the direct formation of fully substituted poly(organophosphazenes), (N= PR_2)_n, via the thermal ring-opening route is generally not achieved with fully substituted organophosphazene trimers, (N=PR₂)₃, unless a ring-strain-inducing transannular metallocene or similar unit is present on the $trimer.^{20-22}$

The majority of polymers with direct P–C linkages are most easily prepared if alkyl or aryl groups are incorporated into a monomer before polymerization. The principal synthetic route to poly(organophosphazenes) of this type is via the condensation polymerization of *N*-silylphosphoranimines as developed by Neilson and Wisian-Neilson. 4.23–26 This polymerization proceeds, uncatalyzed, at temperatures near 180–200 °C, to produce

 $^{^\}dagger$ Present address: Department of Chemistry, Hobart and William Smith Colleges, Geneva, NY 14456.

 $^{^{\}ddagger}$ Present address: 3M Corporate Process Technology Center, St. Paul, MN 55144.

a range of poly(aryl/alkylphosphazenes) with number-average molecular weights (\textit{M}_n) that approach 10^5 and polydispersities of 1.5-3.0. In addition, recent reports describe the synthesis and characterization of phosphazene polymers in which the backbone phosphorus atom is part of an unsaturated heterocyclic hydrocarbon ring 24 or through the thermal decomposition of phosphazene azides, such as $Ph(\textit{o-tolyl})PN_3.^{27,28}$ However, these methods produce a limited number of polyphosphazenes with little to no molecular weight control.

In this paper, as part of our ongoing study of the cationic induced ambient temperature method,5-13 we report the reactivity of the asymmetrically substituted monomers Me₃SiN=P(CF₃)(Ph)Br, Me₃SiN=P(CH₃)(Ph)-Br, and Me₃SiN=P(t-Bu)(Ph)F under cationic catalyzed conditions. The bromo-based monomers were synthesized following literature^{25,29} procedures, while the Me₃-SiN=P(*t*-Bu)(Ph)F was obtained by a novel substitution reaction of the difluorophosphoranimine, Me₃SiN=P(Ph)-F₂, with tert-butyllithium. The synthesis of the polyphosphazenes $[N=PPh(CF_3)]_n$ and $[N=PPh(CH_3)]_n$, via the PCl₅-induced polymerization of the respective bromo monomers, is reported here. In addition, the formation of linear short-chain oligomers [R(Ph)(t-Bu)P=N(PR₂= N)P(t-Bu)(Ph)R₂] and mono- and ditelechelic polyphosphazenes using Me₃SiN=P(t-Bu)(Ph)F as an initiating or terminating species is discussed.

Results and Discussion

Overall Approach. The living cationic-induced polymerization of phosphoranimines is applicable to a wide range of derivatives that contain side groups with steric bulk and electron-withdrawing or -donating characteristics. With this in mind, it seemed possible that this route could be used to synthesize new polyphosphazenes with side groups that have traditionally been inaccessible. Of particular interest, and the focus of this paper, is the synthesis of perfluoromethyl, methyl, and *tert*-butyl-substituted materials. Additional interest was focused on the preparation of stereoregular polyphosphazenes, species only rarely reported in the past.^{23–28}

Synthesis of Methyl- and Trifluoromethyl-Substituted Polyphosphazenes. Neilson, Wisian-Neilson, and their co-workers reported preliminary attempts to synthesize phosphazene systems containing trifluoromethyl and methyl substituents via the uncatalyzed condensation polymerizations of tris(organo)phosphoranimine species. ^{23,26,31,32} They found that thermal treatment (220 °C) of Me₃SiN=P(Ph)(CF₃)(OCH₂CF₃) did not produce polymeric materials and that the monomer was recovered unchanged. Moreover, thermolysis of the monomers Me₃SiN=P(CF₃)(Ph)Br (**3**) and Me₃SiN=P(CH₃)(Ph)Br (**4**) gave mixtures of cyclic trimers and low molecular weight linear polymers. ³³

Previously, we have shown that Me₃SiN=P(OCH₂-CF₃)₂Br undergoes polymerization with trace amounts of PCl₅ in solution and in the bulk state at 35 °C, to produce [N=P(OCH₂CF₃)₂]_n in moderate yield.⁷ Thus, the polymerization behavior of Me₃SiN=P(CF₃)(Ph)Br (3) and Me₃SiN=P(CH₃)(Ph)Br (4) under similar conditions was explored. Phosphoranimines 3 and 4 were prepared according to literature procedures.^{29,33,34} The polymerization reactions of 3 with PCl₅ in CH₂Cl₂ proceeded very slowly, and the monomer never fully polymerized. This is consistent with the behavior of other phenylorganophosphoranimines, such as Me₃-SiN=PPhX₂ (X = Cl, F), where it has been observed that

Scheme 2

Br
$$\stackrel{P}{=}$$
 NSiMe₃ $\stackrel{PCl_5}{=}$ $\stackrel{P}{=}$ N \stackrel{P}

Table 1. Polymer Molecular Weights for the Polymerizations of 3 and 4 with PCl₅

			$M_{ m n}$		
polymer	monomer	M:I	found ^a ($\times 10^{-4}$)	$\operatorname{calcd}^b(\times 10^{-4})$	PDI
5a	3	10:1	1.33	0.45	1.03
5 b	3	20:1	1.65	0.83	1.02
5c	3	40:1	1.94	1.60	1.03
6a	4	5:1	0.20	0.19	1.19
6b	4	10:1	0.80	0.33	1.24
6 c	4	20:1	1.31	0.61	1.21

 a Molecular weight obtained from GPC versus polystyrene standards following replacement of Br with NaOCH $_2$ CF $_3.\ ^b$ Calculated at 100% conversion.

the solvent reacts with the monomer, initiator, and/or growing polymer chain to hinder the production of the desired polymer. However, polymerizations of $\bf 3$ in the bulk state at 35 °C proceeded to completion to yield polymers with controlled molecular weights. For example, the reaction of $\bf 3$ with PCl₅ in a 20:1 ratio (Scheme 2) resulted in the rapid evolution of Me₃SiBr accompanied by a significant increase in the viscosity of the reaction mixture. The resultant viscous polymer was soluble in THF. Variations in the monomer-to-initiator ratio gave polymers with controlled molecular weights (Table 1, entries 1–3). 35

Monomer 4 failed to polymerize in solution or in the bulk state over a 1 week period. However, polymerization did occur if the initiator [Br(Ph)(CH₃)P=NPCl₃]+-[PCl₆] was first prepared in situ and the monomer was then added to it. In fact, the reactions of 4 with initiator ratios of 5:1 and 10:1 were complete within 12 h, as determined by ³¹P NMR spectroscopy, while a 20:1 reaction took 4 times longer to reach completion. Before isolation of the polymers, all reaction mixtures were treated with sodium trifluoroethoxide to replace the halogen atoms by trifluoroethoxy groups. Each polymer (6) was isolated as a gum which was soluble in common organic solvents such as methylene chloride, THF, or chloroform. The polymers in this study, produced by the cationic method, were obtained under relatively mild conditions, with controlled molecular weights and low polydispersities.

New Synthetic Route to the Di(organo)monof-luorophosphoranimine $Me_3SiN=P(t-Bu)(Ph)F$ (8). The synthesis of asymmetric phosphoranimines has normally been achieved via the Wilburn method or through phosphorane routes.^{29,32} Attempts have been reported to incorporate isopropyl and *tert*-butyl groups as part of a symmetrical (silylamino)phosphine ($Me_3-Si)_2N-PR_2$ (R=i-Pr, t-Bu) via the reaction of monosubstituted chlorophosphines ($Me_3Si)_2N-P(R)Cl$ (R=i-Pr, t-Bu) with the appropriate Grignard or alkyllithium reagent.⁴ However, this procedure was complicated by a variety of side reactions and did not produce the desired compound.

We have attempted the synthesis of a new target diorganomonofluorophosphoranimine containing a bulky

Scheme 3

tert-butyl group, which was not attainable through the previously reported methods. The new approach utilizes the special reactivity of phosphorus-fluorine bonds. Cyclic trimeric and high polymeric phosphazene materials such as $(N=PF_2)_n$ have served as useful intermediates for the synthesis of a variety of alkyl-, aryl-, and organometallic-substituted polyphosphazenes. $^{36-39}\,\mathrm{The}$ increased strength of the phosphorus-nitrogen bonds in $(N=PF_2)_n$, compared to their counterparts in $(N=PF_2)_n$ PCl₂)_n, results in an enhanced stability of the backbone toward Grignard and alkyllithium reagents. When these reagents are used to replace the chlorine atoms in (N= PCl₂)_n, a significant degree of skeletal cleavage occurs. 39-41 Thus, the present efforts focused on the reactions of organolithium reagents with Me₃SiN= P(Ph)F₂ (7) as a route to new asymmetric di(organo)phosphoranimines with P-C linkages.

Substitution reactions of stoichiometric amounts of the organolithium reagents MeLi, n-BuLi, and t-BuLi with Me₃SiN=P(Ph)F₂ at -78 °C were carried out in an effort to produce new monomers (Scheme 3). The reaction with t-BuLi gave the desired diorganomonofluorophosphoranimine, Me₃SiN=P(t-Bu)(Ph)F (8). However, it was found that the MeLi and *n*-BuLi reactions were not selective, and both of the fluorine atoms were replaced to produce the trisubstituted phosphoranimine species, $Me_3SiN=P(Ph)R_2$ (R = Me, n-Bu), as detected by ³¹P NMR spectroscopy. The difference in reactivity of the lithium reagents suggests that the steric nature of the *t*-Bu group limits substitution to only one fluorine atom on the Me₃SiN=P(Ph)F₂ monomer. Thus, the substitution reactions of difluorophosphoranimine monomers serve as a versatile synthetic route to a variety of alkyl/aryl or organometallic phosphoranimines. In principle, monomer 8 is an excellent candidate for the cationic-induced polymerization process. Because of the absence of halogen leaving group, Me₃SiN=P(Ph)Me₂ and Me₃SiN=P(Ph)(*n*-Bu)₂ are not suitable for polymerization. They are, however, ideal candidates for the termination or initiation of living poly(dichlorophosphazene) polymer chains, similar to the various tris-(organophosphoranimines) reported in a recent paper. 12

Use of Me₃SiN=P(t-Bu)(Ph)F (8) as a Polymerization Initiator and Terminator. Monomer 8 with PCl₅, in various ratios, failed to polymerize in solution (CH₂Cl₂, toluene) or in the bulk state. Attempts to induce polymerization with the [Cl₃P=NPCl₃]⁺[PCl₆]⁻ initiator were also unsuccessful. This resistance to polymerization is believed to be due to the effect of the electron-donating substituents and has been observed in similar diorganophosphoranimines.⁷

However, the inertness of monomer **8** toward polymerization allowed it to be utilized as an initiator or terminator for the preparation of both monotelechelic and ditelechelic polyphosphazenes. 12 Reaction between PCl₅ and **8** produced the short-chain initiator [F(Ph)(t-Bu) $P=NPCl_3$ ⁺[PCl_6]⁻ (**9**). Treatment with 10 equiv of Me₃SiN=PCl₃ (1) gave a living poly(dichlorophosphazene) chain of formula $[F(Ph)(t-Bu)P=N-(Cl_2P=N)_n-$

PCl₃]⁺[PCl₆]⁻, as monitored by ³¹P NMR spectroscopy. The P-Cl bonds along the polymer backbone were then replaced by trifluoroethoxy groups to yield the monotelechelic polyphosphazene Ph(t-Bu)(CF₃CH₂O)P=N[P(OCH₂- $CF_3)_2 = N_{In}(P(OCH_2CF_3)_4)$. Similarly, a ditelechelic polymer was obtained by reaction of 1 with PCl₅ (10:1 molar ratio) in CH₂Cl₂ to produce [(Cl₂P=N)_nPCl₃]⁺[PCl₆]⁻. The living chain was terminated with 3 equiv of 8, thereby quenching the polymerization. Subsequent replacement of the P-Cl bonds led to the isolation of the hydrolytically stable ditelechelic polymer Ph(t-Bu)-(t-Bu).

Despite the fact that [F(Ph)(t-Bu)P=NPCl₃]⁺[PCl₆]⁻ initiates the polymerization of Me₃SiN=PCl₃, it cannot be used to polymerize $Me_3SiN=P(t-Bu)(Ph)F$ (8) under similar conditions. Attempts to polymerize 8 from 9 using molar ratios of 5:1, 10:1, and 20:1 all resulted in the formation of a single product and unreacted monomer as indicated by ³¹P NMR spectroscopy. The substitution pattern of the ³¹P spectrum suggested that the product formed was the short-chain species [F(t-Bu)- $(Ph)P=N-PCl_2=N-P(Ph)(t-Bu)F]^+$ (10), shown in Scheme 4, which was inert toward further reaction with 8. Isolation of hydrolytically stable materials was achieved by replacement of the chlorine and fluorine atoms in compound 10 with alkoxy and aryloxy substituents. Specifically, the sodium salts of trifluoroethanol, octafluoropentanol, and phenol were used to prepare compounds 11-13, as illustrated in Scheme 4. All products were characterized by mass spectrometry (FAB+) and multinuclear NMR spectroscopy.

Thus, the facile replacement of the chlorine and fluorine atoms in compound 10 suggests that it is feasible to prepare a wide variety of related compounds utilizing this methodology. For example, it may be possible to selectively replace the chlorine or fluorine atoms to yield materials with different properties. Similarly, the P-Ph units at the termini of these compounds are known to undergo nitration reactions and subsequent reduction to the free amines.⁴ These materials may also be suitable candidates for a variety of condensation type polymerizations if two reactive functional groups are present as end units. These selective substitution reactions are currently under investigation.

Characterization of Polymers and Substituted Short-Chain Compounds. *Polymer* 5. The bulk polymerization of monomer 3 yielded a viscous polymer which was analyzed by NMR and gel permeation chromatography (GPC). The ³¹P NMR spectrum contained a quartet resonance at -10.4 ppm (J = 1050 Hz), which is consistent with the formation of the polymer

Figure 1. Four possible conformations for $RPh(t-Bu)P=N-P(R_2)=N-P(t-Bu)(Ph)R_2$.

[N=PPh(CF₃)]_n. Table 1 outlines the molecular weights of the polymers obtained at monomer **3** to PCl₅ ratios of 10:1 (**5a**), 20:1 (**5b**), and 40:1 (**5c**). A 100% conversion was assumed on the basis of the consumption of **3**. The difference between the calculated and found molecular weights is attributed to the discrepancies which are often observed when polyphosphazenes are compared to polystyrene standards.³⁵

Polymer **6**. Multinuclear NMR spectroscopy was employed to verify the structure of polymer **6**. The ³¹P spectrum consisted of a broad singlet centered at 1.5 ppm for the [N=P(Ph)(Me)]_n units, while the ¹H NMR spectrum contained several overlapping signals in the expected Ph, Me, and OCH₂CF₃ regions. Information on the stereoregularity of polymer **6** was obtained from ¹³C NMR spectroscopy which indicated an atactic polymer with resolution of the triad structure. These NMR results are similar to those reported for **6** in the literature.³² The molecular weights, determined by gel permeation chromatography, are listed in Table 1.³⁵

Monotelechelic and Ditelechelic Polyphosphazenes. Monotelechelic and ditelechelic polyphosphazenes were isolated by the use of **8** as an initiator and terminator species and were characterized by multinuclear NMR and GPC. Values of $M_{\rm n}=6.2\times10^3$ and PDI = 1.34 were obtained for the monotelechelic material, while the ditelechelic material had a $M_{\rm n}=1.10\times10^4$ and PDI = 1.03. For both materials, the presence of the Ph and *t*-Bu end groups caused a change in the observed refractive index of the final polymer compared to that of [N=P(OCH₂CF₃)₂]_n controls. The switching of the refractive index has previously been detected when block copolymers of [N=PPh(OCH₂CF₃)]_m[N=P(OCH₂CF₃)₂]_n were prepared.⁷⁻⁹

Compounds **10**–**13**. For the preparation of compound **10**, an equimolar reaction of initiator **9** with monomer **8** was carried out. The structure of this material was verified by 1 H, 13 C, and 31 P NMR spectroscopy as well as FAB+ mass spectrometry. The 31 P spectrum showed a doublet of doublets at 65 ppm and a triplet at -7.5 ppm in a 2:1 ratio, which is consistent with the structure of **10**. However, the 13 C NMR spectrum of this compound showed that the P-C(CH₃)₃ and P-Ph bonds on each end of the molecule were inequivalent with one another. This was attributed to the presence of *two distinct sets* of doublets of doublets in the appropriate regions of the spectrum.

Following substitution of the halogen atoms in **10**, the ¹H and ¹³C NMR spectra became very complex. This was explained by the four possible structures that exist for a substituted material of this nature (Figure 1). ³¹P

NMR spectroscopy was used to verify that this was in fact the case. The ^{31}P resonances shifted downfield for the central $[P(OR)_2]$ group and upfield for the terminal $[P(Ph)(t\text{-Bu})(OR)_2]$ units with respect to compound $\mathbf{10}$. In all cases, the spectra were found to exhibit two doublets for the terminal phosphorus atoms and three doublets in a 1:2:1 ratio for the central $[P(OR)_2]$ unit. This is explained by the structures shown in Figure 1, together with the fact that structures b and c are mirror images of each other and are thus indistinguishable on the NMR time scale.

Summary

The bromophosphoranimines 3 and 4 undergo cationic polymerization to yield the stereoregular polymers [N= $P(Ph)(CF_3)]_n$ (5) and $[N=P(Ph)(CH_3)]_n$ (6) with controlled molecular weights and low polydispersities. ¹³C NMR spectroscopy was used to monitor the stereoregularity. The monomer Me₃SiN=P(Ph)F₂ underwent substitution reactions with alkyllithium reagents to produce both disubstituted Me₃SiN= $P(Ph)R_2$ (R = Me, n-Bu) and the new diorganomonofluorophosphoranimine Me₃SiN= P(t-Bu)(Ph)F (8). Monomer 8 was resistant to polymerization under a variety of conditions. However, it could be used as both an initiator and terminator in the preparation of mono- and ditelechelic polyphosphazenes. In addition, this monomer reacts with an equimolar ratio of PCl₅ to produce a new linear trimer (**10**) which readily undergoes substitution with alkoxy and aryloxy nucleophiles to produce 11–13 in good yields. These materials form a new class of asymmetric small molecule phosphazenes which may be useful as monomers for future polymerization processes.

Experimental Section

Materials. Sodium phenoxide, sodium trifluoroethoxide, sodium octafluoropentoxide, PhPF₄, Me₃SiN=P(Ph)(CF₃)Br (3),²⁹ Me₃SiN=P(CH₃)(Ph)Br,³³ and Me₃SiN=P(Ph)F₂,²⁹ were synthesized and purified by literature procedures. Phosphorus pentachloride, 1.7 M *tert*-butyllithium, 1.4 M methyllithium, 2.0 M *n*-butyllithium, octafluoropentanol, phenol, and 2,2,2-trifluoroethanol were obtained from Aldrich. Dichloromethane was dried and distilled from CaH₂ and then from P₂O₅ into the reaction flask. Tetrahydrofuran and hexane were distilled into the reaction flask from sodium benzophenone ketyl under an atmosphere of dry argon.

All glassware was flame-dried under vacuum before use. The reactions were carried out using standard Schlenk techniques or in an inert atmosphere glovebox (Vacuum Atmospheres) under an atmosphere of dry argon or nitrogen.

Equipment. 31P, 13C, and 1H spectra were recorded with a Bruker WM-360 NMR operated at 146, 90.27, and 360 MHz, respectively. ¹H and ¹³C NMR spectra are referenced to internal CDCl₃. ³¹P NMR chemical shifts are relative to 85% phosphoric acid as an external reference, with positive shift values downfield from the reference. All NMR chemical shifts are reported in ppm while coupling constants are reported in hertz. Molecular weights were estimated using a Hewlett-Packard HP 1090 gel permeation chromatograph equipped with an HP-1047A refractive index detector, American Polymer Standards AM gel 10 mm and AM gel 10 mm 104 Å column, with the system calibrated versus polystyrene standards (Polysciences). The samples were eluted with a 0.1 wt % solution of tetra-n-butylammonium nitrate (Aldrich) in THF (OmniSolv). MALDI mass spectra were collected using a Voyager DESTR MALDI-TOF spectrometer. FAB (+) and CI were collected on a Voyager DESTR spectrometer.

Preparation of Me₃SiN=P(Ph)(CF₃)Br (3). This monomer was synthesized by previously reported methods.²⁹ Additional characterization: ³¹P NMR (CDCl₃): $\delta = -24.5$ (q; J

= 40). ¹H NMR (CDCl₃): δ = 7.8 (dd, J = 18, 7, 2H, o-C₆H₅), 7.5 (m, 3H, m-, p-C₆H₅), 0.19 (d, J = 3, 9H, SiMe₃). ¹³C NMR (CDCl₃): $\delta = 137.6$ (d, J = 178.1, 1C, quaternary C₆H₅), 132.5 (d, J = 20.4, 2C, C₆H₅), 129.1 (3C, C₆H₅), 128.7 (d of q, J =320.5, 20.2, CF₃), and 3.2 (d, J = 30.9, SiMe₃).

Preparation of Me₃SiN=P(t-Bu)(Ph)F (8). To a THF solution (100 mL) of F₂PhP=NSiMe₃ (5) (10.1 g, 43.3 mmol) at -78 °C was added 1.7 M t-BuLi (25.5 mL, 43.3 mmol) dropwise over 5 min. The resultant slurry was allowed to warm to room temperature, and all volatiles were removed in vacuo. The viscous oil was distilled under vacuum (90 °C, 20 mmHg) to produce Me₃SiN=P(t-Bu)(Ph)F as a clear colorless oil. The chemical shift for the ³¹P NMR was 38.61 ppm, which is consistent with monomers that have electron-donating substituents attached to the phosphorus atom.

For (8): Yield 68% (7.8 g). ³¹P NMR (CDCl₃): $\delta = 38.61$ (d, J = 1031.7). ¹H NMR (CDCl₃): $\delta = 7.69 - 7.65$ (m, 2H, C₆H₅), 7.41–7.18 (m, 3H, C_6H_5), 1.07 (d, J = 16.9, 9H, (CMe₃), and 0.00 ppm (s, 9H, SiMe₃). ¹³C NMR (CDCl₃): $\delta = 133.00$ (d, J = 12.2, C_6H_4), 132.89 (d, J = 1.5, C_6H_5), 132.08 (d, J = 1.5, C_6H_5), 131.14 (d, J = 23.1, C_6H_5), 129.79 (d, J = 21.3, C_6H_5), 128.41 (d, J = 12.2, C_6H_5), 34.10 (dd, J = 104.1, 18.8, CMe_3), 24.97, 3.81 (d, J = 1.9, SiMe₃). MS (CI, Isobutane): m/z = 272 $(MH^+, 100\%)$, 255 (M - Me, 77%), and 200 $(M - SiMe_3, 33\%)$, in good agreement with isotopic abundance calculations.

Preparation of Polymer 5 from the PCl₅ -Induced Polymerization of Me₃SiN=P(Ph)(CF₃)Br (3) in Solution. Treatment of 3 (0.343 g, 1.0 mmol) with PCl₅ (0.02 g, 0.10 mmol), in CH₂Cl₂ resulted in the slow, incomplete formation of the polymer (5) over 1 week. The progress of the reaction was monitored by ³¹P NMR spectroscopy and by the presence of the ³¹P NMR resonance for **3** at -24.5 ppm and new broad resonances at ca. -10.4 ppm (J = 1043) for $[N=PPh(CF_3)]_{I}$. Moreover, attempted polymerization in other solvents such as cyclohexane, THF, and dioxane at various concentrations left the unreacted monomer with no indication of polymer forma-

Preparation of Polymer 5 from the PCl₅-Induced, Solvent-Free Polymerization of Me₃SiN=P(Ph)(CF₃)Br (3). General Procedure. Solvent-free polymerizations of 3 (0.343) g, 1.0 mmol) with PCl_5 (0.02 g, 0.10 mmol) in a 10:1 ratio were performed in reaction vials under an inert atmosphere (Glove Box), with stirring at 35 °C. After 30 min the reaction mixture became immobile. At this point, THF (ca. 10 mL) was added to dissolve the rubbery material, and the solution was examined by ³¹P NMR spectroscopy. The ³¹P NMR spectrum showed the complete consumption of 3, as evidenced by the disappearance of the ³¹P NMR resonance for 3 at -24.5 ppm and the presence of new broad resonances at ca. -10.4 to - 3.7 ppm for $[N=PPh(CF_3)]_n$ (5). All volatile species were removed at reduced pressure. Polymer 5 was then precipitated into deionized water (3 \times) and hexane (2 \times). Yield 90%. ³¹P NMR (CH₂Cl₂): $\delta = -10.4$ ppm. GPC: $M_n = 1.33 \times 10^4$ and PDI = 1.03; $T_g = -19$ °C as observed by DSC. The molecular weights of 5 were controlled by variation of the 3 to PCl₅ ratios (Table

For 5: ^{31}P NMR (CDCl₃): $\delta = -10.4$ (br. s). ^{1}H NMR (CDCl₃): $\delta = 7.98-7.73$ (m, 4H, C₆H₅), 7.65-7.44 (m, 6H, C_6H_5), 4.61–4.19 (m, 6H, OCH₂CF₃). ¹³C NMR (CDCl₃): $\delta =$ 139.53 (d, J = 76.4, quaternary C₆H₅), 138.98 (d, J = 74.5, C_6H_5), 135.62 (d, J = 91.3, C_6H_5), 131.14 (d, J = 11.3, C_6H_5), 130.72 (d, J = 13.4, C_6H_5), 129.76 (t, J = 17.2, C_6H_5), 123.64 (d of q, J = 187.0, 23.5, CF₃), 64.95-62.71 (O CH_2 CF₃).

Procedure for the Polymerization of Me₃SiN=P(CH₃)-**(Ph)Br (4).** To a stirred solution of PCl₅ (0.104 g, 0.5 mmol) in CH₂Cl₂ (10 mL) at 20 °C was added Me₃SiN=P(CH₃)(Ph)-Br (0.065 g, 0.25 mmol) (4) quickly via syringe. The reaction mixture was stirred for 2 h at this temperature. ³¹P NMR spectroscopy of the reaction mixture indicated the presence of the desired initiator species. To the reaction mixture was added a 5-, 10-, or 20-fold excess of Me₃SiN=P(CH₃)(Ph)Br, and the reaction was monitored by ³¹P NMR until complete consumption of the monomer had taken place. At this time, a slight excess of 1.5 M sodium trifluoroethoxide was added to the reaction mixture to substitute the terminal bromine atoms.

After stirring the reaction mixture at room temperature for 8 h, the volatiles were removed under reduced pressure. The residue was redissolved in methylene chloride and the polymer precipitated by the addition of hexanes. The positive ³¹P NMR chemical shift of this polymer (2.04 ppm) is due to the electrondonating methyl substituent, in contrast to the electronwithdrawing CF₃ group in 5 which causes an upfield shift to -10.4 ppm.

For **6**: ³¹P NMR (CDCl₃): $\delta = 2.04$ (br s). ¹H NMR (CDCl₃): $\delta = 8.02 - 7.92$ (m, 6H, C₆H₅), 7.46 - 7.31 (m, 4H, C₆H₅), 4.52 4.06 (m, 6H, OCH₂CF₃), 1.82-1.47 (several overlapping doublets, Me). ¹³C NMR* (CDCl₃): $\delta = 140.48$ (d, J = 72.6, C₆H₅), 139.57 (d, J = 92.6, C₆H₅), 138.05 (d, J = 72.5, quaternary C_6H_5), 130.62 (d, J = 10.3, C_6H_5), 129.21 (d, J = 10.7, C_6H_5), 127.26 (t, J = 12.0, C_6H_5), 62.32-60.01 (overlapping quartets, OCH_2CF_3), 22.49 (d, J = 92.4), 22.02 (d, J = 90.64), 21.44 (d, J = 92.4, Me).* OCH₂CF₃ carbons hidden under aromatic resonances.

Procedure for the Preparation of the Cationic Short-Chain Initiator [FPh(t-Bu)P=NPCl₃]+ [PCl₆]- (9). To a stirred solution of $PCl_{5}\ (0.104\ g,\ 0.5\ mmol)$ in $CH_{2}Cl_{2}\ (10\ mL)$ at 20 °C was added Me₃SiN=P(t-Bu)(Ph)F (0.068 g, 0.25 mmol) (8) quickly via syringe. The reaction mixture was stirred for 2 h at this temperature. ³¹P NMR spectroscopy of the reaction mixture indicated the presence of the desired product as evidenced by a doublet of doublets for the terminal FPh(t-Bu)P at 74.72 ppm (J = 1083, 21.8) and a triplet for the PCl₃⁺ phosphorus atoms at 14.1 ppm (J=12.1). The initiator solution was then used for further reactions without isolation.

Preparation of Ph(t-Bu)(CF₃CH₂O)P=N[P(OCH₂CF₃)₂= $N]_n - P(OCH_2CF_3)_4$. To a stirred solution of the initiator (9) in CH₂Cl₂ was added 1. After 6 h, all the initial monomer (1) had reacted, as evidenced by the disappearance of the ³¹P NMR resonance for 1 at -54 ppm and the presence of a new resonance at -17.6 ppm for $[Cl_2P=N]_n$. Following complete formation of the polymer, all volatile species were removed at reduced pressure. The residue was then dissolved in 10 mL of THF and treated with a 2-fold excess per chlorine atom of 1.5 M sodium trifluoroethoxide in THF. The mixture was stirred at 25 °C for 24 h to produce the corresponding macromolecule $(Ph)(t-Bu)(CF_3CH_2O)P=N[P(OCH_2CF_3)_2=N]_n(P(OCH_2CF_3)_4$. This polymer was isolated via precipitation into deionized water (3×) and hexane (2×). ¹H NMR (acetone- d_6): $\delta = 7.93-7.96$ $(m, 3H, C_6H_5), 7.66-7.70 (m, 2H, C_6H_5), 4.33-4.73 (m, OCH_2-1)$ CF₃), 1.17–1.27 (m, 9H, CMe₃). ³¹P NMR (acetone- d_6): -6.7 (br s, $[N=P(OCH_2CF_3)]_n$), -1.42 (br s, $P(OCH_2CF_3)_2(Ph)(t-Bu)$.

Preparation of Ph(t-Bu)(CF₃CH₂O)P=N[P(OCH₂CF₃)₂= $N]_n - P(OCH_2CF_3)_2(Ph)(t-Bu)$. A solution of 10 mg (0.048) mmol) of PCl₅ in 10 mL of CH₂Cl₂ or toluene was placed in a flask and was stirred for 1 h. A solution of 1 in 2 mL of CH2-Cl₂ was then added to the flask. The reaction mixture was monitored by ³¹P spectroscopy until complete conversion of 1 to polymer had occurred. A slight excess of 8 was then added, and the solution was stirred for 8 h. All volatiles were removed under reduced pressure, and the di-end-capped poly(dichlorophosphazene) was dissolved in 10 mL of THF. To this was added a 2-fold excess, per chlorine atom, of 1.5 M sodium trifluoroethoxide in THF, and the reaction mixture was stirred for 24 h at 25 °C. The derivatized polymer Ph(t-Bu)(CF₃- $CH_2O)P = N[P(OCH_2CF_3)_2 = N]_n - P(OCH_2CF_3)_2(Ph)(t\text{-Bu}) was then$ recovered via precipitation into deionized water $(3\times)$ and hexane (2×). ${}^{1}\hat{H}$ NMR (acetone- d_{6}): $\delta = 7.45-7.94$ (m, 10H, C_6H_5), 4.20-4.62 (m, O*CH*₂CF₃), 1.03-1.28 (m, 18H, C*Me*₃). ³¹P NMR (acetone- d_6): -6.7 (br s, [N=P(OCH₂CF₃)]_n), -1.42 (br s, $P(OCH_2CF_3)_2(Ph)(t-Bu)$.

Synthesis of [FPh(*t*-Bu)P=N-P(Cl₂)=N-P(*t*-Bu)(Ph)F]⁺ (10). This linear species was prepared in two different manners. Initially, the short-chain initiator, 9, was reacted with Me₃SiN=P(t-Bu)(Ph)F (0.068 g, 0.25 mmol) and stirred for 2 h at 20 °C. ³¹P NMR spectroscopy of the reaction mixture indicated the presence of the desired product. Alternatively, an equimolar reaction of PCl_{5} (0.104 g, 0.5 mmol) in $CH_{2}Cl_{2}$ (10 mL) with Me₃SiN=P(t-Bu)(Ph)F (0.136 g, 0.50 mmol) (8) at 20 $^{\circ}\text{C}$ could be employed. Removal of the solvents in vacuo allowed for the characterization of this air-sensitive material. For **10**: ³¹P NMR (CDCl₃): $\delta = 65.88$ (dd, J = 1070, 11.48, 2P, $P(C_6H_5)(t\text{-Bu})-$), -7.06 (t, J = 11.66, $-PCl_2-$). ¹H NMR (CDCl₃): $\delta = 7.73-7.76$ (m, 4H, C_6H_5), 7.59–7.66 (m, 6H, C_6H_5), 1.11 (d, J = 19.5, 18H, (C Me_3). ¹³C NMR (CDCl₃): $\delta = 135.60$ (dd, J = 9.8, 1.49, C_6H_5), 132.08 (d, J = 2.7, C_6H_5), 131.14 (d, J = 23.1, C_6H_5), 129.79 (d, J = 23.1, C_6H_5), 128.41 (d, J = 12.2, C_6H_5), 34.10 (dd, J = 104.1, 18.83, CMe_3), 24.97, 3.81 (d, J = 1.9, SiMe₃). MS (FAB+): m/z = 272 (MH⁺, 100%), 255 (M – Me, 77%), and 200 (M – SiMe₃, 33%), in good agreement with isotopic abundance calculations.

Synthesis of Compounds RPh(t-Bu)P=N-P(R₂)=N-P(t-Bu)(Ph)R₂ (11-13). General Procedure. Compound 10, [FPh(t-Bu)P=N-P(Cl₂)=N-P(t-Bu)(Ph)F]⁺, was prepared as described above, and to the reaction mixture was added a 6-fold excess of the appropriate sodium salt (NaOCH₂CF₃ for 11, NaOCH₂(CF₂)₃CF₂H for 12, and NaOPh for 13) via syringe. The reaction mixture was then stirred overnight under an argon atmosphere to ensure complete substitution. The volatiles were removed, and the residue was redissolved in methylene chloride. The product was extracted with methylene chloride, washed with distilled water, and dried over magnesium sulfate. After filtration, solvent removal, and drying under vacuum, the products were obtained as yellow viscous oils or solids.

For 11: yield: 76%. ³¹P NMR (CDCl₃): δ = 40.55 (d, 1P, J = 35.4, P(t-Bu)(C₆H₅)), 40.44 (d, 1P, J = 35.4, P(t-Bu)(C₆H₅)), -3.48 [(d, J = 56.5), -3.61 (d, J = 56.0), -3.73 (d, J = 57.1), 1P, P(OCH₂CF₃)₂]. ¹H NMR (CDCl₃): δ = 7.86–7.75, 7.57–7.53, 7.49–7.40 (3m, 10H, C₆H₅), 4.76–4.61, 4.31–4.09 (2m, 10H, OCH₂CF₃), 1.25–1.09 (many overlapping doublets, 18H, CMe₃). ¹³C NMR (CDCl₃): δ = 133.27, 133.13, 132.60, 128.42, 128.28 (many overlapping doublets, C₆H₅), 63.16–60.85 (several overlapping quartets, OCH₂CF₃), 33.17–33.05; 34.37–34.20 (several signals, CMe₃), 23.75, 23.72, 23.62 (CMe₃). MS(FAB+): m/z = 964 (MH+, 3.7%), 703 (M – P(Ph)(t-Bu)-(OCH₂CF₃), 100%).

For **12**: yield: 82%. ³¹P NMR (CDCl₃): δ = 52.81 (d, 1P, J = 44.6, P(t-Bu)(C₆H₅)), 52.67 (d, 1P, J = 46.2, P(t-Bu)(C₆H₅)), -7.77 [(d, J = 92.2), -7.63 (d, J = 91.4), -7.49 (d, J = 89.9), 1P, P(OCH₂(CF₃)₃CHF₂)₂]. ¹H NMR (CDCl₃): δ = 7.70-7.49 (m, 10H, C₆H₅), 6.18-5.81 (6 overlapping triplets, F₂CH, 5H), [4.46 (t, J = 13.1), 4.43 (t, J = 13.2), 3.90 (t, J = 14.4), 10H, OCH₂), 1.18-1.02 (several overlapping doublets, 18H, CMe₃). ¹³C NMR (CDCl₃): δ = 135.25-129.31 (several overlapping signals, C₆H₅), 121.59-120.13 (quaternary C₆H₅, overlapping signals), 118.37-104.74 (several overlapping triplets, CF₂, CF₂H), 63.65 (t, J = 25.7 Hz, OCH₂), 58.92 (t, J = 25.4 Hz, OCH₂), 34.84-33.66 (several overlapping doublets, CMe₃), 22.72 (CMe₃). MS(FAB+): m/z = 1315 (MH+ - OCH₂CF₃), 100%).

For **13**: yield: 85%. ^{31}P NMR (CD₂Cl₂): $\delta = 42.07$ (d, 1P, J = 39.3, P(*t*-Bu)(C₆H₅)), 41.90 (d, 1P, J = 40.7, P(*t*-Bu)(C₆H₅)), -18.94 [(d, J = 75.5), -19.11 (d, J = 75.8), -19.28 (d, J = 78.6), 1P, P(OPh)₂]. ^{1}H NMR (CD₂Cl₂): $\delta = 7.61-6.68$ (m, 35H, C₆H₅), 1.27-0.86 (m, many overlapping doublets, 18H, C*Me*₃). ^{13}C NMR (CD₂Cl₂): $\delta = 158.54$ (quaternary C₆H₅), 150.99, 150.85 (quaternary C₆H₅), 133.70, 130.51, 129.74 (C₆H₅), 129.56, 126.48, 125.90, 121.07, 120.13 (C₆H₅), 119.20, 116.57 (C₆H₅), 35.70, 34.60 (*C*Me₃), 23.91, 23.84 (C*Me*₃). MS(FAB+): m/z = 761 (M - OPh, 53.2%).

Acknowledgment. C.R.D., R.P., J.M.N., and H.R.A. thank the National Science Foundation Polymer Program for support of this work. J.M.N. and C.R.D. also thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for Postdoctoral Research Fellowships.

References and Notes

- Mark, J. E.; Allcock, H. R.; West, R. *Inorganic Polymers*, Prentice Hall: Englewood Cliffs, NJ, 1992.
- Contemporary Polymer Chemistry, Allcock, H. R., Lampe, F. W., Eds.; Prentice Hall: Englewood Cliffs, NJ, 1992; p 546.

- (3) Neilson, R. H.; Jinkerson, D. L.; Kucera, W. R.; Longlet, J. J.; Samuel, R. C.; Wood, C. E. *Inorganic and Organometallic Polymers*; ACS Symposium Series: Denver, 1994; Vol. 572, p. 232.
- (4) Neilson, R. H.; Wisian-Neilson, P. Chem. Rev. 1988, 88, 541.
- Honeyman, C. H.; Manners, I.; Morrissey, C. T.; Allcock, H. R. J. Am. Chem. Soc. 1995, 117, 7035.
- (6) Allcock, H. R.; Crane, C. A.; Morrissey, C. T.; Nelson, J. M.; Reeves, S. D.; Honeyman, C. H.; Manners, I. *Macromolecules* 1996, 29, 7740.
- (7) Allcock, H. R.; Nelson, J. M.; Reeves, S. D.; Honeyman, C. H.; Manners, I. *Macromolecules* **1997**, *30*, 50.
- (8) Allcock, H. R.; Reeves, S. D.; Nelson, J. M.; Manners, I. Manuscript submitted for publication.
- (9) Nelson, J. M.; Primrose, A. P.; Hartle, T. J.; Allcock, H. R.; Manners, I. Macromolecules 1998, 31, 947.
- (10) Allcock, H. R.; Reeves, S. D.; Nelson, J. M.; Crane, C. A.; Manners, I. Macromolecules 1997, 30, 2213.
- (11) Nelson, J. M.; Allcock, H. R. Macromolecules 1997, 30, 1854.
- (12) Allcock, H. R.; Nelson, J. M.; Prange, R.; Crane, C. A.; de Denus, C. R. *Macromolecules* **1999**, *32*, 5736.
- (13) Nelson, J. M.; Allcock, H. R.; Manners, I. *Macromolecules* 1997, 30, 3191.
- (14) Bur, A. J. In Fluoropolymers; Wall, L. A., Ed.; Wiley: New York, 1972.
- (15) Tesi, G.; Douglas, C. M. J. Chem. Soc. 1962, 549.
- (16) Allcock, H. R. In *The Chemistry of Inorganic Ring Systems*; Steudel, T., Ed.; Elsevier: Amsterdam, 1992; Chapter 9, p 145.
- (17) Allcock, H. R. In *Ring-Opening Polymerization*; Brunelle, D. J., Ed.; Hanser: Munich, Germany, 1993; Chapter 7, p 217.
- (18) Allcock, H. R. Proceedings of Symposium on Catalysis, ACS Symposium Series No. 496; American Chemical Society: Washington, DC, 1992; Chapter 18, p 236.
- (19) Manners, I.; Riding, G. H.; Dodge, J. A.; Allcock, H. R. J. Am. Chem. Soc. 1989, 111, 3067.
- (20) Allcock, H. R.; Dodge, J. A.; Manners, I.; Riding, G. H. J. Am. Chem. Soc. 1991, 113, 9596.
- (21) Allcock, H. R.; Riding, G. H.; Manners, I.; McDonnell, G. S.; Dodge, J. A.; Desorcie, J. L. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1990, 31, 48.
- (22) Cho, Y.; Back, H.; Sohn, Y. S. Macromolecules 1999, 32, 2167.
- (23) Neilson, R. H.; Jinkerson, D. L.; Karthikeyan, S.; Samuel, R.; Wood, C. E. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1991, 32, 483.
- (24) Gruneich, J. A.; Wisian-Neilson, P. Macromolecules 1996, 29, 5511.
- (25) Neilson, R. H.; Hani, R.; Wisian-Neilson, P.; Meister, J. J.; Roy, A. K.; Hagnauer, G. L. Macromolecules 1987, 20, 910.
- (26) Neilson, R. H.; Wisian-Neilson, P. *Inorg. Synth.* **1989**, *25*, 69.
- (27) Franz, U.; Nuyken, O.; Matyjaszewski, K. Macromolecules 1993, 26, 3723.
- (28) Herring, D. L. Chem. Ind. (London) 1960, 717.
- (29) Wisian-Neilson, P.; Neilson, R. H.; Cowley, A. H. *Inorg. Chem.* 1977, 16, 1460.
- (30) Honeyman, C. H.; Lough, A. J.; Manners, I. *Inorg. Chem.* 1994, 33, 2988.
- (31) Wisian-Neilson, P.; Neilson, R. H. J. Am. Chem. Soc. 1980, 102, 2848.
- (32) Neilson, R. H.; Lee, C.-Y.; Cowley, A. H. Inorg. Chem. 1977, 16, 1455.
- (33) Wisian-Neilson, P.; Neilson, R. H. Inorg. Chem. 1980, 19, 1875
- (34) Wisian-Neilson, P.; Neilson, R. H. Inorg. Chem. 1982, 21, 3568.
- (35) The discrepancy between theoretical and experimentally obtained molecular weights is thought to be because of an overestimation by gel permeation chromatography versus polystyrene standards.
- (36) Allcock, H. R.; Evans, T. L. J. Macromol. Sci., Chem. 1981, A16 (1), 409.
- (37) Allcock, H. R.; Moore, G. Y. Macromolecules 1975, 8, 377.
- (38) Allcock, H. R.; Patterson, D. B.; Evans, T. L. J. Am. Chem. Soc. 1977, 99, 6095.
- (39) Allcock, H. R.; Patterson, D. B.; Evans, T. L. Macromolecules 1979, 12, 172.
- (40) Harris, P. J.; Desorcie, J. L.; Allcock, H. R. J. Chem. Soc., Chem. Commun. 1981, 852.
- (41) Allcock, H. R.; Chu, C. T.-W. *Macromolecules* **1979**, *12*, 551.

MA990969B